F <- 10^(-1) * matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3)
# Here det(UV^{T}) is negative, so small eigenvalue is multiplied by -1.
# The maximum value in this case is (16.17 + 4.80 - 0.57) = 20.4
values <- visual.check(1000, F)
l1 <- values$l1
l2 <- values$l2
l1values <- l1[ seq(1, length(l1), by = 100) ] # Habeck's method
l2values <- l2[ seq(1, length(l2), by = 100) ] # Kent's method
plot( 1:length(l1values), l1values, type = "l", ylim = c( min(l1values, l2values ) -0.5,
max(l1values, l2values) + 0.5), col = "red" )
lines( 1:length(l2values), l2values, type = "l", col = "blue" )
abline(h = 20.4, lty = "solid")
Run the code above in your browser using DataLab